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ABSTRACT  

Reducing the environmental impact of aviation is a primary goal of NASA aeronautics research. One approach to 

achieve this goal is to build lighter weight aircraft, which presents complex challenges due to a corresponding increase in 

structural flexibility. Wing flexibility can adversely affect aircraft performance from the perspective of aerodynamic 

efficiency and safety. Knowledge of the wing position during flight can aid active control methods designed to mitigate 

problems due to increased wing flexibility. Current approaches to measuring wing deflection, including strain 

measurement devices, accelerometers, or GPS solutions, and new technologies such as fiber optic strain sensors, have 

limitations for their practical application to flexible aircraft control. Hence, it was proposed to use a bio-mimetic optical 

sensor based on the fly-eye to track wing deflection in real-time. The fly-eye sensor has several advantages over 

conventional sensors used for this application, including light weight, low power requirements, fast computation, and a 

small form factor. This paper reports on the fly-eye sensor development and its application to real-time wing deflection 

measurement.  
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1. INTRODUCTION  

In an effort to reduce the environmental impact of aviation, lighter weight aircraft configurations are being considered 

[1]. One challenge of light weight aircraft wings is increased flexibility that can adversely affect handling qualities and 

safety. Approaches using active control to mitigate problems associated with flexible wings have been proposed [2]-[6]. 

Knowledge of aircraft wing position during flight can provide significant advantages to the effectiveness of these 

approaches. Current approaches to measuring wing deflection, including strain measurement devices, accelerometers, or 

GPS solutions, and new technologies such as fiber optic strain sensors, have limitations for their practical application to 

flexible aircraft control. Traditional machine vision systems using charge coupled device (CCD) or complementary 

metal oxide semiconductor (CMOS) arrays have several disadvantages for applications requiring high sensitivity to 

motion and high speed extraction of certain image features such as the object edges of a target, including the blurring of 

objects moving at high speed, and the high computation and data throughput requirements for edge detection [7]-[8]. A 

machine vision system that can perform high speed target tracking in near real-time with low power requirements is 

desirable for wing deflection tracking. 

 An optical sensor based on the physiological aspects of the eye (and vision-related neural layers) of the common 

housefly (Musca domestica) has been developed by researchers at the Wyoming Image and Signal Processing Research 

(WISPR) Laboratory at the University of Wyoming [9]-[16]. A bio-mimetic (also known as biologically inspired) 

engineering approach was used to extract salient features of the fly’s visual system for use in the optical sensor. The 

intent of the research is not to completely reproduce the ability, appearance, or function of the fly’s vision system. 

Rather, select features that are desirable in image processing are reproduced, including high functionality in low-light 

and low-contrast environments, sensitivity to motion, compact size, and low power and computation requirements.  
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Fig. 1. Scanning electron microscope image of Musca domestica, with a depiction of the associated first layer neural 

“wiring” superimposed that shows neural superposition. Image courtesy of M. Wilcox. 

There is a large body of research on the fly-eye visual system (see fig. 1) that was leveraged to develop the fly-eye 

sensor described here [16]-[20]. Laboratory tests were performed on flies at the University of Wyoming to characterize 

the arrangement and interaction of light sensitive cells (ommatidia) in the fly’s compound eye [16]. The fly uses a 

combination of quasi-Gaussian overlapping photoreceptor responses and neural superposition to achieve what has been 

described in the literature as “hyperacuity,” or the ability to detect image features, such as object motion, to a much 

higher degree than just the photoreceptor density would imply. See fig. 2 for an image depicting the overlapping 

Gaussian visual field of three photoreceptors. The overlapping and quasi-Gaussian response fields-of-view (FoVs) allow 

for very precise and very fine measurements of position, direction, and speed. 

 

Fig. 2. Depiction of overlapping Gaussian response similar to that exhibited by the compound eye of common house fly. 



 

 
 

 

 

 

Fig. 3. Simplified diagram showing Gaussian overlapping photoreceptor response and neural superposition of fly-eye visual 

system; each hexagonal shape in (a) delineates the cross section of a structure   called an ommatidium. 

Figure 3 shows a simplified diagram to illustrate the quasi-Gaussian (henceforth called simply “Gaussian”) overlapping 

photoreceptor response and neural superposition that both contribute to such desirable sensor capabilities. In this figure, 

the seven shaded photoreceptors from seven physically distributed ommatidia (the structural elements that make up an 

insect’s compound eye) shown in (a) all view the same point at infinity. The overlapping visual field of the three 

receptors depicted in (b) is shown as (c). All seven visual fields (as half power radii) are shown perpendicular to the 

optical axis in (d). Signals from the physically distributed but optically coaligned photoreceptors combine in the neural 

layer and together are called a “cartridge.” While the fly has eight photoreceptors in each ommatidium, (fig. 1), receptors 

R7 and R8 are “stacked” and share a single optical axis. Note that the Gaussian overlap for an artificial sensor comes 

from the front-end optical design, whereas the neural superposition is accomplished by how the signals are subsequently 

combined. 

Since the sensor excels in detection of even minute motion, a feasibility study using the sensor for detailed target 

tracking was proposed. The purpose is to track a known target pattern at relatively short range, and resolve the position 

and velocity of the pattern relative to a neutral position. One application is the precise measurement of wing deflection in 

a fixed wing aircraft. This optical approach allows for a faster, more efficient approach than alternative methods (such as 

accelerometers or strain gages within the target object). This method does have drawbacks however, such as its reliance 

on a clean line-of-sight to the target. 

2. SENSOR DESIGN & CONSTRUCTION 

2.1 Sensor Subsystems 

This section describes the function and composition of each subsystem within the fly-eye sensor as designed by Dean 

[12], which includes lessons learned from several years of development by other researchers [9]-[16]. See fig. 4 for a 

block diagram of the functionality of one fiber optic channel of the sensor from input to output. The version of the sensor 

described here uses seven fiber-optically fed IFD91 photodarlington detectors [21]. These semiconductive devices 

output a current proportional to the number of photons impinging on the element (i.e. the quantity of light in front of the 

element). This current is small (on the order of 0.1 µA to 10 mA) and thus requires both conversion to a voltage as well 

as amplification. Following the photodarlingtons, a logarithmic compression amplifier circuit is used to achieve current-

to-voltage conversion and to enable increased dynamic range of the output values. Use of the sensor in a wide variety of 

ambient lighting conditions, such as from dim light to extremely bright conditions, requires such increased dynamic 

range to ensure adequate image contrast for detection purposes. 



 

 
 

 

 

 

Fig. 4. Block diagram of sensor functionality through a single channel, where i represents current and v represents voltage. 

A set of active filters are used to remove noise present in the signal. These filters include a 4th-order Butterworth low-

pass filter with a 50 Hz cutoff frequency and a notch filter centered at 60 Hz. These filters specifically target noise 

sources that manifest themselves as flicker in interior lighting, which is well within the detection range of the sensor. 

This is an inexpensive, efficient filtering approach that requires only a small number of components and very little space 

on the PCB. Since the signal of interest is in the near-DC range, a low-pass filter is used.  

Light adaptation makes use of the average value of the ambient lighting. The signal average is computed using a single-

stage averaging amplifier arrangement. This circuit is a variation on a noninverting summing amplifier circuit, in which 

the gain for the signals coming from all 7 optical axes is set to approximately 1/7. The computed average is then filtered 

to near DC using a single stage active filter. This filter reduces oscillations caused by detected motion in the computation 

of the average, and thus mitigates the carry-over of those oscillations into the sensor output signals. The filter is only 

applied to the computed average value, and is not present in all 7 signal channels. The average is designed to 

accommodate all seven channel voltages. If a particular application requires fewer sensor channels (such as mono-axial 

tracking), and the sensor needs to be manufactured as inexpensively as possible, this circuit can be redesigned. 

Following computation of the average value, an instrumentation amplifier is used to subtract the average from each of 

the 7 signals independently. This operation achieves what is referred to as “light-adaptation” through mean removal, a 

process by which the sensor can adapt to different levels of ambient lighting [12]. A low-power instrumentation 

amplifier is used to perform this subtraction. The outputs from this stage are considered the final sensor output signals, 

which can then be sampled by a computer.  

Used by itself, the light adaptation circuit reacts almost instantaneously, which is detrimental to the sensor performance. 

Light adaptation is meant to adjust for relatively slow changes in ambient lighting to allow a wider dynamic range of 

operation than would otherwise be possible. It was found, not unexpectedly, that if the light adaptation is allowed to be 

too fast, it will “adapt” to light changes due to objects of interest instead of to ambient lighting, and make objects of 

interest harder to detect. The solution is to add a time delay to the light adaptation subsystem. All biological creatures 

incorporate such a time delay into their light adaptation physiology. 

Traditional electronic time delay methods, such as memory/shift registers, are not feasible due to the need to preserve the 

analog nature of the signal. A method employing analog-to-digital conversion followed by a delay followed by digital-

to-analog conversion would be too expensive in terms of computation power and time and it could introduce too much 

quantization error. Older analog methods such as resistive-capacitive (RC) or resistive-inductive (RL) delay lines suffer 

from poor stability and unrealistic component values for the delay needed, which was determined to be approximately 

one second. The resulting solution includes a sample and hold circuit with a timer that samples the analog signal, but 

does not quantize or digitally encode the signal. Thus delay was achieved without compromising the analog nature of the 

sensor signal [12].   

2.2 Sensor Platform 

A block diagram incorporating all of the above mentioned subsystems is provided in Fig. 4 and represents the sensor 

platform. A photodarlington pair produces a current (denoted by i) that is fed into a logarithmic compression amplifier. 

The output from that stage is a voltage (denoted by v), which is filtered, and the mean is removed as a form of light-

adaptation. Figure 4 represents a single channel of a seven-channel system, and this process occurs in parallel for each 

channel. A printed circuit board (PCB) layout of the sensor circuits and components described above was designed and 

the board was built using industry standard reflow techniques [17]. 



 

 
 

 

 

 

Fig. 5. Front view of sensor head with U.S. dime for comparison. 

 

Fig. 6. Detail of two photo receptors in sensor head, where w represents the distance between the lens and the image plane 

and Δ φ represents the angle between two lenses. 

The housing for the sensor head is the result of several iterations of development [9]-[16]. The version of the sensor 

being described here has an optically optimized dime-sized sensor head, see fig. 5. The sensor head housing was 

optimized with respect to response, motion acuity, and scalability for commercial production of the sensor, and it was 

designed to incorporate the multi-aperture nature of the Musca domestica eye. Results of the optimization suggested an 

ideal distance between the lens and the image plane of about w = 2.4 mm for pre-blurring, and an inter-lens angle of Δ φ 

= 7.5 deg for 50% overlap, shown in fig. 6. The sensor head is a circular housing that is reasonably simple to 

manufacture and facilitates the tessellation of the sensors on a spherical surface. The circular housing holds seven lenses 

and seven optical fibers. The head is machine milled aluminum, with 1 mm, multi-modal, single-fiber optical light 

guides connecting it to the circuit board. The 3 mm lenses focus the incoming light onto the terminating ends of the light 

guides. To ensure the guides are the correct distance from the lenses, a specially designed tool is inserted into the 

housing and provides a temporary solid plane the guide can rest against until it can be secured in place. When all seven 

light guides and lenses are secured to the sensor head housing, and the guides are properly connected to the PCB, the 

sensor is considered fully assembled. 

Once the sensor is physically assembled, it must be properly calibrated within the desired test environment. The sensor is 

calibrated by directing all facets toward an evenly lit, single-color, specular reflection free background and then 

adjusting the 50 kΩ potentiometers so that all outputs (one from each of the seven channels) are as near to the same 

value as possible. In an ideal lab setup, a curved Lambertian surface would be used to ensure that each of the seven 

channels is receiving stimulus that is not dependent on the viewing angle. This arrangement cannot be achieved with the 



 

 
 

 

 

facilities available, so an alternative approach is used. The maximum output voltage difference measured after 

calibration in the lab is approximately 0.682 volts (about 5.4% of full-scale). An automatic calibration technique using 

digital potentiometers can also be used [12]. 

A hyperacuity to motion is a compelling attribute of this sensor package, and is one of the main reasons for this research. 

As a target moves within the FOV of the sensor, the response is nearly immediate. The photodarlingtons measure the 

quantity of light within their range. For example, a target that is darker than the background causes a decrease in the 

output of a photodarlington sensing the target. Tracking multiple outputs at once allows for the determination of the 

direction and speed of such a target. 

Table 1. Characterization parameters for sensor measured over numerous trails. 

Parameter Min Typical Max 

Output [V] ~0.0 0.49 0.72 

Mean Voltage [V] 1.15 4.92 7.7 

Operating Range [cm]  25.4 ~130-150 

Sensor, PCB, and Cables Weight [g]  135  

Input Illuminance [lx] 1 520 36,000 

Power Consumption [W]  3.3  

 

Characterization tests have indicated a number of operating parameters for the system, see Table 1. These describe 

general operating conditions for the sensor package. Extreme conditions may result in different behavior. Note that, for 

all the methods and results discussed later, these parameters are taken into careful consideration. The logarithmic 

compression system is designed to operate up to 72,000 luminance (or lux) [12] , which, as Table 1 indicates, is far 

above the highest generated in the lab setting. The lux is measured using a Lutron LX-102 light meter. Current and 

voltage parameters are simultaneously measured using two Mastech MS8050 Digital Multimeters. While the operating 

range between the sensor and the target indicated in Table 1 is sufficient for the demands of this project, augmented 

range may be realized by using additional optics in front of the sensor head. The need for such optics is application 

specific. 

3. TEST SETUP 

A light box was constructed to enable controlled lighting for testing. The light box features a 48.5 in wide by 33 in tall 

by 56 in deep region for testing. In order to allow ambient room light to enter the box and to allow researchers to 

manipulate equipment within the environment, the top of the box is intentionally left uncovered. All interior surfaces are 

covered in a matte white felt that provides a uniformly, approximately Lambertian surface as a background. The sensor 

is mounted at one end of the box, and the target is placed within the box. All measurement, power supply, and analysis 

hardware is located immediately next to the box. Precision controlled light panels are used to control the light 

environment. These devices are constructed in-house to provide even “pure-white” light from Super Flux White Light-

emitting Diode (LED) Lamps to illuminate the test environment. For the majority of the tests discussed here, ambient 

room light was sufficient and the panels were not needed. 

Having a static target is desirable for fundamental device characterization tests; however, for target tracking, the 

presence of a dynamic target was necessary. A Houston Instrument plotter has been used for years at the University of 

Wyoming to facilitate dynamic tests [10]-[15]. The same device is used here to allow vertical oscillation of the target. 

The plotter is controlled using a Wavetek function generator. The function generator produces a triangular wave with an 

approximately known frequency and the plotter moves accordingly. 



 

 
 

 

 

 

Fig. 7. Sensor head mounted in test box with target and light panel. 

The sensor mount holds the sensor head stationary while tests are being conducted, but also allows for repositioning of 

the sensor between tests if the need arises, see fig. 7. A portion of the light-box wall is removed to provide the sensor 

mount a slot to reside within. This ensures the fiber-optic lines leaving the sensor head can smoothly connect to the PCB, 

and that the sensor and test hardware can be carefully manipulated by researchers. Figure 7 shows the sensor head on the 

mounting platform. The light panels  appear on the left and right sides of the sensor head, the plotter appears on the right 

side of the figure, and the target itself (a “+” sign measuring 3 cm tall and 3 cm across) is just visible in front of the 

sensor head. See fig. 8 for an image of the target. 

 

Fig. 8. Image of target used for testing. 

The entire system (including the sensor itself) is powered by Mastech power supplies. Each light panel has its own 

supply, enabling adjustment of each panel separately. The sensor has a dedicated Mastech HY3005D-3 DC Power 

Supply that provides the necessary 15 VDC. Data is acquired through a DATAQ USB data acquisition unit (DAQ). This 

plug-and-play device utilizes the WinDAQ software package to simultaneously sample all seven DC voltages from the 

sensor. The program produces comma delimited .csv files. In all cases considered, the data is sampled at 30 Hz on each 

channel, which is close to the sampling limit of the DAQ. 



 

 
 

 

 

 

Fig. 9. Alignment of the sensor's primary axis and the motion axis of the target. Note that the target is not to scale. 

Tests were performed using the setup described above. The motion of the target was strictly in the vertical direction, and 

along the central axis of the sensor. The alignment of the target and the sensor is illustrated in fig. 9. The “TOP,” 

“MIDDLE,” and “BOTTOM” labels refer to the positions of the lens relative to the rest of the test environment. In future 

discussions of the target tracking algorithm, these labels will be used to denote signals measured from the corresponding 

photodarlington. 

The variable being altered from one test instance to the next is the oscillation frequency of the target. Numerous tests 

were performed, but the hardware used to create motion (the plotter) is limited to frequencies under approximately 0.8 

Hertz. As a measure of the position truth, the waveform generated to drive the plotter is captured alongside the sensor 

data. This voltage acts as the reference to which reconstruction attempts are compared.  

4. SOFTWARE TRACKING ALGORITHMS 

A primary goal when designing software to accompany the fly-eye sensor is to use as simple an algorithm as possible for 

target position reconstruction. This ensures the algorithm has limited assumptions and maintains a minimal 

computational overhead cost. Initial attempts at position reconstruction presented here are offline techniques instead of a 

real-time algorithm that is ultimately desired. Offline approaches have the distinct disadvantage of having to post-

process data from the sensor after the test is complete. It is expected that the offline approach will lead to a real-time 

implementation in the future.  

The first step in the post-processing is to scale the data sets. Scaling is done by subtracting the difference between each 

individual channel mean and the minimum channel mean from each signal. Only three channels are used for this 

application, those associated with the three photodarlingtons along the sensor’s primary axis. Thus, the TOP, MIDDLE, 

and BOTTOM measurements are moved into approximately the same range without corrupting any of the data. The 

position truth measure is also scaled into a similar range for display purposes. 



 

 
 

 

 

 

Fig. 10. Quantitative noise comparison of the scaled TOP signal and the difference signal. 

Following the scaling procedure, the difference between the BOTTOM and TOP signals is computed. This value is the 

basis for the analysis and reconstruction. Using a difference signal provides the distinct benefit of common-mode noise 

removal. This reduction of noise can be qualitatively seen in fig. 10, which shows a zoomed view of the peaks in the raw 

TOP signal data and the TOP minus BOTTOM difference signal. 

The eventual goal of this project is the creation of a frequency-independent, low-cost, low-power use, low-computational 

overhead tracking algorithm to use with the current generation of fly-eye sensor. The following algorithm, while still 

operating offline, simulates the behavior that could be achieved with a real-time algorithm. As with many real-time 

processing tasks, there is a transient start-up time during which the algorithm might not give proper reconstruction. The 

extent of this transient is not necessarily evident in this simulation, but the final tracking results are congruent with those 

that could be expected while operating fully in real-time. 

The algorithm reported here uses the difference between the TOP and BOTTOM signals as a data source. The data is 

read into MATLAB from a .csv file, and then scaled for display purposes (this scaling is done to both the position data 

and the raw signal data). Next, the difference between the TOP and BOTTOM signals is computed. This is a process that 

can easily be done in hardware by using an instrumentation amplifier (such as an AD620). This difference is then 

smoothed using a 5-point moving average filter, as given by eq. (1) 

 

2

1
5

2

( ) ( )
i

k i

y i x k


 

 
 (1) 

where x is the original, unsmoothed data and y is the smoothed data. While the discrete nature of a 5-point moving 

average filter inherently demands digitization of the signal, a similar smoothing can be achieved using an analog low-

pass filter. Since the algorithm’s output very closely resembles the motion of the target itself, if the maximum oscillation 

frequency of the target is known, then the cutoff frequency of the filter can be set. An initial value could be 8-10 times 

the maximum target movement frequency. However, it is entirely possible to disregard this filtering if the high-

frequency noise is low enough. The result of smoothed and unsmoothed approaches is given in the next section. 

5. RESULTS 

The results of the tracking algorithms previously discussed are provided and analyzed here. The eventual goal of the 

project is the development and deployment of an embedded system for the inexpensive, efficient, real-time measurement 

of wing deflection. These results are evaluated based on that goal. While the final results are given in units of voltage, 



 

 
 

 

 

they can easily be mapped into different units (such as displacement distance), depending on the downstream 

requirements. 

  

Fig. 11. Position reconstruction with smoothing for target oscillating at 0.2 Hz (solid line) and position truth (dashed line). 

The resulting reconstruction of a target moving at 0.2 Hz is shown in fig. 11. As mentioned earlier, a delay is built into 

the sensor response to avoid artifacts in the signal. Additionally, since the X-Y plotter used to move the target is a 

mechanical system, there is some inherent delay within the device. Combined, these delays are evident in the figures 

illustrating the reconstructed position and the position truth. While compensation for this approximately 133 ms delay 

could be done, it would require additional computational overhead, and would likely be a frequency dependent process, 

something this algorithm strives to avoid. When conducting an error analysis of the reconstruction, specifically a mean 

squared error (MSE) based analysis, it is beneficial to remove this time delay by shifting the data into sync with the 

position truth. This avoids corrupting MSE-based error results. 

Table 2. Fundamental error analysis of the reconstruction of 2.0 Hz target motion. 

Parameter Value 

Mean squared error 0.0049 

Root mean squared error 0.0697 

Maximum error 0.1161 

Average error 0.0624 

 

Table 2 provides fundamental error statistics concerning the shifted reconstruction using the offline approach for the 0.2 

Hertz data. Tests using a target moving at 0.8 Hz demonstrated similar error statistics. Since the values are scaled into 

the zero-to-one (0-1) range, an error of 1 would indicate the worst possible reconstruction value.  

The optimal range for the target motion refers to the area in the sensor’s FOV in which the overlapping nature of 

adjacent photodarlington responses is utilized. While motion primarily in a single channel’s FOV does register a 

response from the sensor, hyperacuity depends upon multiple channels observing the motion. In addition, if the target 

moves beyond the center of the TOP or BOTTOM FOV, then the target position cannot be easily resolved with this 

technique due to the lack of an overlapping FOV in this area. 



 

 
 

 

 

 

Fig. 12. Position reconstruction with no smoothing for target oscillating at 0.2 Hz (solid line) and position truth (dashed 

line). 

While fig. 11 shows results using the algorithm that includes smoothing in the result, that step is not entirely necessary. 

Figure 12 shows results from the same 0.2 Hz test with the same algorithm except for the omission of the 5-point 

moving average filtering.  

6. CONCLUSIONS 

This paper reports on efforts to develop a bio-mimetic fly-eye sensor to track a target for real-time measurement of wing 

deflection. The fly-eye sensor has several advantages over conventional sensors used for this application, including light 

weight, low power requirements, fast computation, and a small form factor. A PCB was built for the sensor package as 

part of this research. Tests were run in which data was obtained from the sensor when a target moved in a vertical 

direction in front of the sensor. Algorithms that worked on the data after it was post-processed showed good target 

tracking results. Suggestions were made as to how these algorithms could be implemented in hardware to provide a real-

time solution to target tracking the deflection of an aircraft wing. 
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